ESTRUCTURA DE LA MATERIA
- concepto físico
- Electrones: partículas eptónicas con carga eléctrica negativa.
- Protones: partículas baiónicas con carga eléctrica positiva.
- Neutrones: partículas baiónicas sin carga eléctrica (pero con momento magnético).
Aproximadamente 400 a.C., el filósofo griego Demócrito sugirió que toda la materia estaba formada por partículas minúsculas, discretas e indivisibles, a las cuáles llamó átomos. Sus ideas fueron rechazadas durante 2000 años, pero a finales del siglo dieciocho comenzaron a ser aceptadas.
En 1808, el maestro de escuela inglés, Jhon Dalton, publicó las primeras ideas "modernas" acerca de la existencia y naturaleza de los átomos. Resumió y amplió los vagos conceptos de antiguos filósofos y científicos. Esas ideas forman la base de la Teoría Atómica de Dalton, que es de las más relevantes dentro del pensamiento científico.
Los postulados de Dalton se pueden enunciar:
Un elemento está compuesto de partículas pequeñas e indivisibles llamadas átomos.
Todos los átomos de un elemento dado tienen propiedades idénticas, las cuales difieren de las de átomos de otros compuestos
Los átomos de un elemento no pueden crearse, ni destruirse o transformarse en átomos de otros elementos.
Los compuestos se forman cuando átomos de elementos diferentes se combinan entre sí en una proporción fija.
Los números relativos y tipos de átomos son constantes en un compuesto dado.
En la época de Dalton se conocían la ley de la Conservación de la Materia y la Ley de las Proporciones Definidas, las cuales fueron la base de su teoría atómica. Dalton consideró que los átomos eran esferas sólidas e indivisibles, idea que en la actualidad se rechaza, pero demostró puntos de vista importantes acerca de la naturaleza de la materia y sus interacciones.
En ese tiempo algunos de sus postulados no pudieron verificarse (o refutarse) experimentalmente, ya que se basaron en limitadas observaciones experimentales de su época. Aún con sus limitaciones, los postulados de Dalton constituyen un marco de referencia que posteriormente los científicos pudieron modificar o ampliar.
Por esta razón se considera a Dalton como el padre de la Teoría Atómica Moderna.
La partícula más pequeña de un elemento que mantiene su identidad quimica a través de todos los cambios químicos y físicos se llama: Átomo. En casi todas las moléculas, dos o más átomos se unen entre sí formando unidades discretas muy pequeñas (partículas) que son eléctricamente neutras. Una Molécula es la partícula más pequeña de un compuesto o elemento que tiene existencia estable o independiente.
Un átomo de oxigeno no puede existir sólo a temperatura ambiente y presión atmosférica normal; por tanto, cuando se mezclan átomos de oxígeno en esas condiciones, de inmediato se combinan en pares. El oxígeno que se conoce está formado por dos átomos de oxígeno; es una molécula diatómica O2. Otros de moléculas diatómicas son: alhidrógeno , el nitrógeno, el flúor, el cloro, el bromo y el yodo.
Otros elementos existen como moléculas más complejas; por ejemplo el fósforo forma moléculas de cuatro átomos y el azufre moléculas de ocho átomos en condiciones de temperatura y presión normales. Las moléculas que contienen más de dos átomos se denominan moléculas poliatómicas.
Los átomos son los componentes de las moléculas, y estás a su vez son los componentes de los elementos y de la mayor parte de los compuestos. A simple vista es posible observar las muestras de compuestos y elementos, formadas por grandes números de átomos y moléculas. Con el microscopio electrónico es posible en la actualidad ver los átomos.
El Electrón:
El electrón, comúnmente representado como e− es una partícula subatómica. En un átomo los electrones rodean el núcleo, compuesto de protones y neutrones. Los electrones tienen la carga eléctrica más pequeña, y su movimiento genera corriente eléctrica. Dado que los electrones de las capas más externas de un átomo definen las atracciones con otros átomos, estas partículas juegan un papel primordial en la química.
Historia y descubrimiento del electrón
La existencia del electrón fue postulada por G. Johnstone Stoney, como una unidad de carga en el campo de la electroquímica. El electrón fue descubierto por Thomson en 1897 en el Laboratorio Cavendish de la Universidad de Cambridge, mientras estudiaba el comportamiento de los rayos catódicos. Influenciado por el trabajo de Maxwell y el descubrimiento de los rayos X, dedujo que en el tubo de rayos catódicos existían unas partículas con carga negativa que denominó corpúsculos.
Aunque Stoney había propuesto la existencia del electrón fue Thomson quién descubrió su caracter de partícula fundamental. Para confirmar la existencia del electrón era necesario medir sus propiedades, en particular su carga eléctrica. Este objetivo fue alcanzado por Millikan en el célebre experimento de la gota de aceite realizado en 1909.
George Paget Thomson, hijo de J.J. Thomson, demostró la naturaleza ondulatoria del electrón probando la dualidad onda-corpúsculo postulada por la mecánica cuántica. Este descubrimento le valió el Premio Nobel de Física de 1937.
El spin del electrón se observó por vez primera en el experimento de Stern-Gerlach. Su carga eléctrica puede medirse directamente con un electrómetro, y la corriente generada por su movimiento con un galvanómetro.
Los electrones y la práctica
Propiedades y comportamiento de los electrones
El electrón tiene una carga eléctrica negativa de −1.6 × 10−19 culombios y una masa de 9.10 × 10−31 kg (0.51 MeV/c2), que es aproximadamente 1800 veces menor que la masa del protón. El electrón tiene un spin 1/2, lo que implica que es un fermión, es decir, que se le puede aplicar la estadística de Fermi-Dirac.
Aunque la mayoría de los electrones se encuentran formando parte de los átomos, los hay que se desplazan independientemente por la materia o juntos formando un haz de electrones en el vacío. En algunos superconductores los electrones se mueven en pareja.
Cuando los electrones que no forman parte de la estructura del átomo se desplazan y hay un flujo neto de ellos en una dirección, este flujo se llama corriente eléctrica. La electricidad estática no es un flujo de electrones. Es más correcto definirla como "carga estática", y está causada por un cuerpo cuyos átomos tienen más o menos electrones de los necesarios para equilibrar las cargas positivas de los núcleos de sus átomos. Cuando hay un exceso de electrones, se dice que el cuerpo está cargado negativamente. Cuando hay menos electrones que protones el cuerpo está cargado positivamente.
Si el número total de protones y electrones es equivalente, el cuerpo está en un estado eléctricamente neutro. Los electrones y los positrones pueden aniquilarse mutuamente produciendo un fotón. De manera inversa, un fotón de alta energía puede transformarse en un electrón y un positrón.
El electrón es una partícula elemental, lo que significa que no tiene una subestructura (al menos los experimentos no la han podido encontrar). Por ello suele representarse como un punto, es decir, sin extensión espacial.
Sin embargo, en las cercanías de un electron pueden medirse variaciones en su masa y su carga. Esto es un efecto común a todas las partículas elementales: la partícula influye en las fluctuaciones del vacío en su vecindad, de forma que las propiedades observadas desde mayor distancia son la suma de las propiedades de la partícula más las causadas por el efecto del vacío que la rodea.
Hay una constante física llamada radio clásico del electrón, con un valor de 2.8179 × 10−15 metros. Es preciso tener en cuenta que éste es el radio que se puede inferir a partir de la carga del electrón descrito desde el punto de vista de la electrodinámica clásica, no de la mecánica cuántica. Por esta constante se refiere a un concepto desfasado, aunque útil para algunos cálculos.
Electrones en el Universo: Se cree que el número total de electrones que cabrían en el universo conocido es del orden de 10130.
Electrones en la vida cotidiana: La corriente eléctrica que suministra energía a nuestros hogares está originada por electrones en movimiento. El tubo de rayos catódicos de un televisor se basa en un haz de electrones en el vacío desviado mediante campos magnéticos que impacta en una pantalla fosforescente. Los semiconductores utilizados en dispositivos tales como los transistores Más información en: Electricidad
Electrones en la industria: Los haces de electrones se utilizan en soldaduras.
Electrones en el laboratorio: El microscopio electrónico, que utiliza haces de electrones en lugar de fotones, permite ampliar hasta 500.000 veces los objetos. Los efectos cuánticos del electrón son la base del microscopio de efecto túnel, que permite estudiar la materia a escala atómica.
El Protón:
Partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos. Al protón y al neutrón se les denomina también nucleones. El núcleo del atómo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo. El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión.
El número atómico de un elemento indica el número de protones de su núcleo, y determina de qué elemento se trata. En física nuclear, el protón se emplea como proyectil en grandes aceleradores para bombardear núcleos con el fin de producir partículas fundamentales. Como ion del hidrógeno, el protón desempeña un papel importante en la química.
El antiprotón, la antipartícula del protón, se conoce también como protón negativo. Se diferencia del protón en que su carga es negativa y en que no forma parte de los núcleos atómicos. El antiprotón es estable en el vacío y no se desintegra espontáneamente. Sin embargo, cuando un antiprotón colisiona con un protón, ambas partículas se transforman en mesones, cuya vida media es extremadamente breve. Si bien la existencia de esta partícula elemental se postuló por primera vez en la década de 1930, el antiprotón no se identificó hasta 1955, en el Laboratorio de Radiación de la Universidad de California.
Los protones son parte esencial de la materia ordinaria, y son estables a lo largo de periodos de miles de millones, incluso billones, de años. No obstante, interesa saber si los protones acaban desintegrándose, en una escala temporal de 1033 años o más. Este interés se deriva de los actuales intentos de lograr teorías de unificación que combinen las cuatro interacciones fundamentales de la materia en un único esquema.
Muchas de las teorías propuestas implican que el protón es, en último término, inestable, por lo que los grupos de investigación de numerosos aceleradores de partículas están llevando a cabo experimentos para detectar la desintegración de un protón. Hasta ahora no se han encontrado pruebas claras; los indicios observados pueden interpretarse de otras formas.
El Neutrón:
El Neutrón es una partícula eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.
La existencia de los neutrones fue descubierta en 1932 por Chadwick; estudiando la radiación emitida por el berilio bombardeado con partículas, demostró que estaba formada por partículas neutras de gran poder de penetración, las cuales tenían una masa algo superior a la del protón.
El número de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino.
En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.
Los neutrones como todas las radiaciones, producen daños directos, provocando reacciones nucleares y químicas en los materiales alcanzados. Una particularidad de los neutrones es la de producir en los materiales irradiados sustancias radioactivas de vida media muy larga. De ahí que los daños más graves producidos por las explosiones nucleares sean los provocados por neutrones en cuanto que las sustancias transformadas en radiactivas por su acción pueden ser asimiladas por organismos vivientes; pasado cierto tiempo, estas sustancias se desintegran y provocan en el organismo trastornos directos y mutaciones genéticas.
CONDUCTORES, SEMICONDOCTORES Y AISLANTES
Cuando un cuerpo neutro es electrizado, sus cargas eléctricas, bajo la acción de las fuerzas correspondientes, se redistribuyen hasta alcanzar una situación de equilibrio. Algunos cuerpos, sin embargo, ponen muchas dificultades a este movimiento de las cargas eléctricas por su interior y sólo permanece cargado el lugar en donde se depositó la carga neta. Otros, por el contrario, facilitan tal redistribución de modo que la electricidad afecta finalmente a todo el cuerpo. Los primeros se denominan aislantes y los segundos conductores.Esta diferencia de comportamiento de las sustancias respecto del desplazamiento de las cargas en su interior depende de su naturaleza íntima. Así, los átomos de las sustancias conductoras poseen electrones externos muy débilmente ligados al núcleo en un estado de semilibertad que les otorga una gran movilidad, tal es el caso de los metales. En las sustancias aislantes, sin embargo, los núcleos atómicos retienen con fuerza todos sus electrones, lo que hace que su movilidad sea escasa.Entre los buenos conductores y los aisladores existe una gran variedad de situaciones intermedias. Es de destacar entre ellas la de los materiales semiconductores por su importancia en la fabricación de dispositivos electrónicos que son la base de la actual revolución tecnológica. En condiciones ordinarias se comportan como malos conductores, pero desde un punto de vista físico su interés radica en que se pueden alterar sus propiedades conductoras con cierta facilidad mejorando prodigiosamente su conductividad, ya sea mediante pequeños cambios en su composición, ya sea sometiéndolos a condiciones especiales, como elevada temperatura o intensa iluminación.A temperaturas cercanas al cero absoluto, ciertos metales adquieren una conductividad infinita, es decir, la resistencia al flujo de cargas se hace cero. Se trata de los superconductores. Una vez que se establece una corriente eléctrica en un superconductor, los electrones fluyen por tiempo indefinido.
CONDUCTORES DE LA CORRIENTE ELÉCTRICA
Conductores son todos aquellos materiales o elementos que permiten que los atraviese el flujo de la corriente o de cargas eléctricas en movimiento. Si establecemos la analogía con una tubería que contenga líquido, el conductor sería la tubería y el líquido el medio que permite el movimiento de las cargas.
Caja preparada con conductores eléctricos de cobre para colocar. tomas de corriente en una instalación eléctrica doméstica.
Cuando se aplica una diferencia de potencial a los extremos de un trozo de metal, se establece de inmediato un flujo de corriente, pues los electrones o cargas eléctricas de los átomos que forman las moléculas del metal, comienzan a moverse de inmediato empujados por la presión que sobre ellos ejerce la tensión o voltaje.Esa presión procedente de una fuente de fuerza electromotriz (FEM) cualquiera (batería, generador, etc.) es la que hace posible que se establezca un flujo de corriente eléctrica a través del metal.
SEMICONDUCTORES
Todos los circuitos integrados se fabrican con semiconductores, sustancias cuya capacidad de conducir la electricidad es intermedia entre la de un conductor y la de un no conductor o aislante. El silicio es el material semiconductor más habitual. Como la conductividad eléctrica de un semiconductor puede variar según la tensión aplicada al mismo, los transistores fabricados con semiconductores actúan como minúsculos conmutadores que abren y cierran el paso de corriente en sólo unos pocos nanosegundos (milmillonésimas de segundo). Esto permite que un ordenador pueda realizar millones de instrucciones sencillas cada segundo y ejecutar rápidamente tareas complejas.El bloque básico de la mayoría de los dispositivos semiconductores es el diodo, una unión de materiales de tipo negativo (tipo n) y positivo (tipo p). Los términos "tipo n" y "tipo p" se refieren a materiales semiconductores que han sido dopados, es decir, cuyas propiedades eléctricas han sido alteradas mediante la adición controlada de pequeñísimas concentraciones de impurezas como boro o fósforo. En un diodo, la corriente eléctrica sólo fluye en un sentido a través de la unión: desde el material de tipo p hasta el material de tipo n, y sólo cuando el material de tipo p está a una tensión superior que el de tipo n. La tensión que debe aplicarse al diodo para crear esa condición se denomina tensión de polarización directa. La tensión opuesta que hace que no pase corriente se denomina tensión de polarización inversa. Un circuito integrado contiene millones de uniones p-n, cada una de las cuales cumple una finalidad específica dentro de los millones de elementos electrónicos de circuito. La colocación y polarización correctas de las regiones de tipo p y tipo n hacen que la corriente eléctrica fluya por los trayectos adecuados y garantizan el buen funcionamiento de todo el chip.
AISLANTES
CLASES DE AISLANTES
1Antes que nada tenemos que definir claramente lo que es un aislante y no son mas que cualquier material que conduce mal el calor o la electricidad y que se emplea para suprimir su flujo, o sea, que las cargas se mueven con mucha dificultad.
1 Son aquellos materiales en los cuales los electrones no se desprenden fácilmente, aún aplicando una diferencia de potencial, es decir, una presión eléctrica elevada.
Las dos clases de aislantes mas importantes que existen son:
- Aislantes Eléctricos.
- Aislantes Térmicos.
AISLANTES ELÉCTRICOS
Como su nombre lo dice es perfecto para las aplicaciones eléctricas y sería aun mas perfecto si fuera absolutamente no conductor, pero claro ese tipo de material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Un buen aislante apenas poseen electrones permitiendo así el flujo continuo y rápido de las cargas.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aislan con vidrio, porcelana u otro material cerámico.
La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de poxy y los poliuretanos pueden proteger contra los productos químicos y la humedad.
AISLANTES TÉRMICOS
Los materiales de aislamiento térmico se emplean para reducir el flujo de calor entre zonas calientes y frías. Por ejemplo, el revestimiento que se coloca frecuentemente alrededor de las tuberías de vapor o de agua caliente reduce las pérdidas de calor, y el aislamiento de las paredes de una nevera o refrigerador reduce el flujo de calor hacia el aparato y permite que se mantenga frío.
El aislamiento térmico puede cumplir una o más de estas tres funciones: reducir la conducción térmica en el material, que corresponde a la transferencia de calor mediante electrones; reducir las corrientes de convección térmica que pueden establecerse en espacios llenos de aire o de líquido, y reducir la transferencia de calor por radiación, que corresponde al transporte de energía térmica por ondas electromagnéticas. La conducción y la convección no tienen lugar en el vacío, donde el único método de transferir calor es la radiación. Si se emplean superficies de alta reflectividad, también se puede reducir la radiación. Por ejemplo, puede emplearse papel de aluminio en las paredes de los edificios. Igualmente, el uso de metal reflectante en los tejados reduce el calentamiento por el sol. Los termos o frascos Dewar impiden el paso de calor al tener dos paredes separadas por un vacío y recubiertas por una capa reflectante de plata o aluminio.
El aire presenta unas 15.000 veces más resistencia al flujo de calor que un buen conductor térmico como la plata, y unas 30 veces más que el vidrio. Por eso, los materiales aislantes típicos suelen fabricarse con materiales no metálicos y están llenos de pequeños espacios de aire. Algunos de estos materiales son el carbonato de magnesio, el corcho, el fieltro, la guata, la fibra mineral o de vidrio y la arena de diatomeas. El amianto se empleó mucho como aislante en el pasado, pero se ha comprobado que es peligroso para la salud y ha sido prohibido en los edificios de nueva construcción de muchos países.
En los materiales de construcción, los espacios de aire proporcionan un aislamiento adicional; así ocurre en los ladrillos de vidrio huecos, las ventanas con doble vidrio (formadas por dos o tres paneles de vidrio con una pequeña cámara de aire entre los mismos) y las tejas de hormigón (concreto) parcialmente huecas. Las propiedades aislantes empeoran si el espacio de aire es suficientemente grande para permitir la convección térmica, o si penetra humedad en ellas, ya que las partículas de agua actúan como conductores. Por ejemplo, la propiedad aislante de la ropa seca es el resultado del aire atrapado entre las fibras; esta capacidad aislante puede reducirse significativamente con la humedad.
Los costes de calefacción y aire acondicionado en las viviendas pueden reducirse con un buen aislamiento del edificio. En los climas fríos se recomiendan unos 8 cm de aislamiento en las paredes y entre 15 y 20 cm de aislamiento en el techo.
Recientemente se han desarrollado los llamados superaislantes, sobre todo para su empleo en el espacio, donde se necesita protección frente a unas temperaturas externas cercanas al cero absoluto. Los tejidos superaislantes están formados por capas múltiples de mylar aluminizado, cada una de unos 0,005 cm de espesor, separadas por pequeños espaciadores, de forma que haya entre 20 y 40 capas por centímetro.
RESISTENCIA
Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.
Normalmente los electrones tratan de circular por el circuito eléctrico de una forma más o menos organizada, de acuerdo con la resistencia que encuentren a su paso. Mientras menor sea esa resistencia, mayor será el orden existente en el micromundo de los electrones; pero cuando la resistencia es elevada, comienzan a chocar unos con otros y a liberar energía en forma de calor. Esa situación hace que siempre se eleve algo la temperatura del conductor y que, además, adquiera valores más altos en el punto donde los electrones encuentren una mayor resistencia a su paso.
CONDUCTIVIDAD ELECTRICA
La conductividad eléctrica es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales.
La conductividad es la inversa de la resistividad, por tanto , y su unidad es el S/m (siemens por metro).
No confundir con la conductancia (G), que es la facilidad de un objeto o circuito para conducir corriente eléctrica entre dos puntos. Se define como la inversa de la resistencia .
RESISTIVIDAD
Se le llama resistividad al grado de dificultad que encuentran los electrones en sus desplazamientos. Se designa por la letra griega rho minúscula (ρ) y se mide en ohms por metro (Ω·m, a veces también en Ω·mm²/m).
Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor.
Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la resistividad de los semiconductores disminuye ante el aumento de la temperatura.
CONDUCTANCIA ELECTRICA
Se denomina Conductancia eléctrica (G) de un conductor a la inversa de la oposición que dicho conductor presenta al movimiento de los electrones en su seno, esto es, a la inversa de su resistencia eléctrica (R), por lo que:
donde:
G = Conductancia en SiemensR = Resistencia en Ohmios
La unidad de medida de la conductancia en el Sistema internacional de unidades es el Siemens.Este parámetro es especialmente útil a la hora de tener que manejar valores de resistencia muy pequeños.
MODELO MATEMATICO
En ciencias aplicadas un Modelo matemático es uno de los tipos de modelos científicos, que emplea algún tipo de formulismo matemático para expresar relaciones, proposiciones sustantivas de hechos, variables, parámetros, entidades y relaciones entre variables y/o entidades u operaciones, para estudiar comportamientos de sistemas complejos ante situaciones difíciles de observar en la realidad.
El significado de Modelo matemático en matemáticas, sin embargo, es algo diferente. En concreto en matemáticas se trabajan con modelos formales. Un modelo formal para una cierta teoría matemática es un conjunto sobre el que se han definido un conjunto de relaciones unarias, binarias y trinarias, que satisface las proposiciones derivadas del conjunto de axiomas de la teoría. La rama de la matemática que se encarga de estudiar sistemáticamente las propiedades de los modelos es la teoría de modelos.
El termino de modelización matemática es utilizada también en diseño gráfico cuando se habla de modelos de los objetos en 2D o 3D.
SISTEMA INTERNACIONAL DE MEDIDA
El Sistema Internacional de Unidades, abreviado SI, también denominado Sistema Internacional de Medidas, es el sistema de unidades más extensamente usado y es la forma actual del sistema métrico decimal. El SI también es conocido como sistema métrico, especialmente en las naciones en las que aún no se ha implantado para su uso cotidiano. Fue creado en 1960 por la Conferencia General de Pesos y Medidas, que inicialmente definió seis unidades físicas básicas o fundamentales. En 1971, fue añadida la séptima unidad básica, el mol.
Una de las principales características, que constituye la gran ventaja del SI, es que sus unidades están basadas en fenómenos físicos fundamentales. La única excepción es la unidad de la magnitud masa, el kilogramo, que está definida como la masa del prototipo internacional del kilogramo o aquel cilindro de platino e iridio almacenado en una caja fuerte de la Oficina Internacional de Pesos y Medidas.
Las unidades del SI son la referencia internacional de las indicaciones de los instrumentos de medida y a las que están referidas a través de una cadena ininterrumpida de calibraciones o comparaciones. Esto permite alcanzar la equivalencia de las medidas realizadas por instrumentos similares, utilizados y calibrados en lugares apartados y por ende asegurar, sin la necesidad de ensayos y mediciones duplicadas, el cumplimiento de las características de los objetos que circulan en el comercio internacional y su intercambiabilidad.
Desde el 2006 se está unificando el SI con la norma ISO 31 para formar el Sistema Internacional de Magnitudes (ISO/IEC 80000). Hasta mayo del 2008 ya se habían publicado 7 de las 14 partes de las que consta.
Definiciones de las unidades básicas
Kelvin (K). Unidad de temperatura termodinámica.
Definición: Un kelvin es la temperatura termodinámica correspondiente a la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.
Segundo (s). Unidad de tiempo.
Definición: El segundo es la duración de 9 192 631 770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.
Metro (m). Unidad de longitud.
Definición: Un metro es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo.
Kilogramo (kg). Unidad de masa.
Definición: Un kilogramo es una masa igual a la almacenada en un prototipo.
Amperio (A). Unidad de intensidad de corriente eléctrica.
Definición: Un amperio es la intensidad de una corriente constante que manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a 2•10-7 newton por metro de longitud.
Mol (mol). Unidad de cantidad de sustancia.
Definición: Un mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12. Cuando se emplea el mol, es necesario especificar las unidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas.
Candela (cd). Unidad de intensidad luminosa.
Definición: Una candela es la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540•1012 hercios y cuya intensidad energética en dicha dirección es 1/683 vatios por estereorradián.
referencias:
http://clasedeelectrotecnia.blogspot.com/
http://asifunciona.com/electrotecnia/ke_resistencia/ke_resistencia_1.htm
No hay comentarios:
Publicar un comentario